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ABSTRACT: Exchange coupling is quantified in lanthanide (Ln)
single-molecule magnets (SMMs) containing a bridging N2

3− radical
ligand and between [Cp*2Yb]

+ and bipy•− in Cp*2Yb(bipy), where
Cp* is pentamethylcyclopentadienyl and bipy is 2,2′-bipyridyl. In the
case of these lanthanide SMMs, the magnitude of exchange coupling
between the Ln ion and the bridging N2

3−, 2J, is very similar to the
barrier to magnetic relaxation, Ueff. A molecular version of the
Hubbard model is applied to systems in which unpaired electrons on magnetic metal ions have direct overlap with unpaired
electrons residing on ligands. The Hubbard model explicitly addresses electron correlation, which is essential for understanding
the magnetic behavior of these complexes. This model is applied quantitatively to Cp*2Yb(bipy) to explain its very strong
exchange coupling, 2J = −0.11 eV (−920 cm−1). The model is also used to explain the presence of strong exchange coupling in
Ln SMMs in which the lanthanide spins are coupled via bridging N2

3− radical ligands. The results suggest that increasing the
magnetic coupling in lanthanide clusters could lead to an increase in the blocking temperatures of exchange-coupled lanthanide
SMMs, suggesting routes to rational design of future lanthanide SMMs.

■ INTRODUCTION

Single-molecule magnets (SMMs), which are isolated mole-
cules that display slow magnetic relaxation, have been
vigorously pursued as qubits for quantum computers1,2 and
molecular spin valves3 and as interesting subjects for
fundamental studies of molecular magnetism.4,5 Perhaps the
most important property of an SMM is its blocking
temperature, below which the SMM displays hysteresis. This
temperature represents the approximate upper limit for the
operating temperature of any SMM-based device. A variety of
approaches to increase the blocking temperature have been
tried including increasing the spin of the SMM by incorporating
multiple, exchange-coupled metal ions or increasing the
magnetic anisotropy of the SMM by incorporating lanthanide
(Ln) ions. However, using both strategies in the same SMM
has proven difficult, as exchange coupling involving Ln ions is
generally weak. In fact, typical Ln SMMs involve isolated Ln
ions; for example, [Pc2Tb]

− and {[Pc(OEt)8]2Dy}
− (PcH2 =

phthalocyanine) display magnetic hysteresis up to 1.7 and 4 K,
respectively.6,7 A previous suggestion3 that addition of active
radicals with unpaired electrons could result in higher blocking
temperatures is consistent with recent reports for {[L2(thf)-
Ln]2(μ−η2:η2-N2)}

−, 1 (L = N(SiMe3)2, thf = tetrahydrofuran),
which display hysteresis to 8.3 and 14 K for Ln = Dy and Tb
(1-Dy and 1-Tb), respectively.8,9 In contrast, the best transition
metal SMM possesses hysteresis to 4.5 K.10

Single-molecule magnetic behavior arises from an energy
barrier, Ueff (usually due to zero-field splitting in transition
metal clusters and ligand-field anisotropy in lanthanide and
actinide complexes) that inhibits magnetization reversal in an
applied field and “freezes” the magnetic state of the system. The

magnetic relaxation time of an SMM, τ, is related to the energy
barrier by an Arrhenius relationshi, τ = τ0 exp(Ueff/kBT).
Ideally, this thermal barrier determines the blocking temper-
ature at which the hysteresis loop closes. However, in most
SMMs, lower energy pathways, especially tunneling through the
barrier,11 dominate relaxation behavior and the blocking
temperature is much lower than expected from Ueff.

6,12 For
example, in the terbium phthalocyanine triple-decker complex
Tb2(obPc)3, where obPc is the dianion of octabutoxyphthalo-
cyanine, Ueff is comparable to that of 1-Tb but non-Arrhenius
relaxation pathways limit the blocking temperature to 1.5 K.13

In contrast, the hysteresis loops of 1-Dy and 1-Tb close at
temperatures consistent with measured values of Ueff for these
molecules. At the blocking temperature, the most important
relaxation pathway in 1 appears to be thermally activated
relaxation due to Ueff. At lower temperatures, other pathways,
presumably tunneling pathways, are more important, and 1-Dy
and 1-Tb undergo relaxation faster than predicted by the
Arrhenius relationship.8

In 1, the high blocking temperature is related to
antiferromagnetic exchange coupling between each trivalent
Ln ion and the bridging dinitrogen radical, which gives rise to a
molecular ferrimagnet in which the moments of the Ln ions are
aligned with each other and antialigned with the moment of the
bridging N2

3− radical. The role of the bridging dinitrogen
radical may be inferred by the absence of SMM properties in 2,
in which the closed-shell dinitrogen ligand forms a bridge
between the two Ln fragments (see Figure 1).9 While strong
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exchange coupling between the magnetic ions appears
necessary to produce high blocking temperatures in these
SMMs, strong exchange coupling alone cannot guarantee high
blocking temperatures since other relaxation pathways could
decrease the blocking temperature. Nevertheless, understanding
the origin of the strong exchange coupling between Ln3+ and
N2

3− is a crucial first step toward rationally designing Ln SMMs
with stronger exchange coupling.
Ideally, one would like to examine strong exchange in 1;

however, their complex magnetic behavior makes separating the
effects of magnetic exchange from other effects difficult.
Fortunately, similarly strong magnetic coupling occurs in
other Ln complexes. In particular, Cp*2Yb(bipy), 3, where
Cp* is pentamethylcyclopentadienyl and bipy is 2,2′-bipyridine,
displays, as does 1, strong exchange coupling between a ligand-
based radical and a trivalent Ln center.14−17

Previous studies have shown that 3 is multiconfigura-
tional.15,16 The main configuration, |f13,bipy•−⟩, consists of a
[Cp*2Yb]

+ fragment coordinated by a bipy radical anion
(bipy•−). The minor configuration, |f14,bipy⟩, consists of a
neutral Cp*2Yb coordinated by a neutral bipy ligand. Overall,
the wave function may be written as Ψ = c1|f

13,bipy•−⟩ + c2|
f14,bipy⟩, where c1 and c2 are coefficients of the two
configurations and c1

2 = 0.83.16 Computational modeling
showed that the multiconfigurational ground state is due to
mixing of low-lying excited states into the ground state.15 The
calculated stabilization of the singlet state is 0.28 eV, which
suggests that exchange coupling should be very large in this
system (the magnitude of the exchange coupling is equivalent
to the stabilization of the singlet state in this case). However,
quantifying exchange coupling between bipy•− and the Yb3+

center has proven problematic due to the difficulty in modeling
the magnetic susceptibility of exchange-coupled systems
involving Ln ions.18 While it is possible to model the
variable-temperature magnetic susceptibility of two identical,
exchange-coupled Ln ions,19 no analogous method currently
exists for modeling the magnetic susceptibility of a Ln ion
coupled to a nonidentical spin such as an organic radical.
However, exchange coupling between Yb3+ and bipy•− can be
quantified from the temperature-independent paramagnetism
(TIP) of the open-shell singlet ground state by extending the
approach developed by Griffith20 to metal ions with
unquenched orbital angular momentum.
The strong exchange coupling in 3 may be quantitatively

explained using a Hubbard molecule model (HMM),21,22 which
is the well-known Hubbard model23 applied to a single
molecule. The HMM is a bonding model that explicitly

includes electron correlation and can be thought of as an
extension of Hückel theory with an additional parameter for the
electron pairing energy.24 As a result, the HMM includes the
effect of configuration interaction on the energies and wave
functions of the electronic states of the molecule, which is
essential to understand the behavior of 3 as demonstrated by
the previous computational study.15 The HMM has been used
previously to model π bonding in ethylene24,25 and to quantify
exchange coupling in donor−acceptor systems.26 A similar
configuration interaction model has been used as part of a
larger Hamiltonian to understand covalency in Cp3Yb.

27 In
addition, Hubbard developed a more comprehensive config-
uration interaction model for bonding and covalency in
transition metal complexes.28

In this paper, exchange coupling in 1 and 3 is quantified by
extending the spin-only Heisenberg, Dirac, van Vleck (HDVV)
Hamiltonian to metal ions with unquenched orbital angular
momentum. In 1, exchange coupling is shown to be very similar
to Ueff. The very strong exchange coupling in 3 is explained
quantitatively using the HMM. The HMM is also used to
explain why the exchange coupling in 1 and 3 is much larger
than that in other lanthanide complexes with radical-based
ligands.

■ RESULTS AND DISCUSSION

Exchange Coupling in Lanthanide Single-Molecule
Magnets (1). Previous studies by Rinehart et al. clearly
demonstrate that exchange coupling is necessary for SMM
behavior of 1;8,9 therefore, estimating the magnitude of this
exchange coupling would be useful to better understand its
effect on the magnetic relaxation of these molecules. Only the
value for the Gd-based complex was determined in ref 9 using a
Heisenberg−Dirac−van Vleck (HDVV) Hamiltonian of the
form = − + ·J S S S2 ( )1 2 r, where J is the effective exchange
constant, S1 and S2 are the spin momenta of the two rare-earth
ions, and Sr is the spin of the radical (an intermolecular
interaction was also taken into account, but it is extremely weak
and we will neglect it here).
In principle, the same Hamiltonian describes the exchange

interaction in 1 for other rare earths; however, the situation is
complicated by the presence of the orbital moment, L, along
with the spin, so that a significant influence of the ligand-field
(LF) potential is expected, which ultimately results in highly
anisotropic coupling between the total angular momenta of the
lanthanide ions and the spin of the radical. Fortunately,
important conclusions regarding the exchange interaction can
be inferred by studying the susceptibility curve measured for 2
(the variant of 1 with a magnetically inactive N2

2− radical and
negligible exchange between the two Dy ions). In particular, the
magnetic moments of 2 are very close to the free-ion values
above 150 K, which implies that the energy levels
corresponding to the LF-split ground multiplet are all thermally
populated above this temperature. We can therefore safely
assume that the crystal-field effect on the susceptibility of 1 will
also be weak in this temperature range and that it can be
accounted for by a scaling factor equal to the ratio between the
measured susceptibility for 2 and its theoretical value for two
uncoupled free ions (in other words, by varying the effective
Lande ́ g factor, geff). We then calculate the susceptibility curve
by numerical diagonalization of the HDVV Hamiltonian within
the whole subspace defined by the ground multiplets of the two
Ln ions (e.g., the 6H15/2 multiplet for Dy) and the Srad = 1/2

Figure 1. Molecules discussed in this paper. Cp* is pentamethylcy-
clopentadienyl, bipy is 2,2′-bipyridine, L is N(SiMe3)2, and thf is
tetrahydrofuran. In all cases, the lanthanide ion is trivalent.
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spin moment of the radical using the projection S = (geff − 1)J
to give = − − + ·J J J S2 (g 1)( )eff 1 2 r, where J1 and J2 are the
total angular momenta of the two rare earth ions (J = L +
S).29,30 The best fits to the experimental data published in refs 8
and 9 are shown in Figure 2 and were obtained using the

parameters given in Table 1. The values obtained for geff do not
significantly deviate from the Lande ́ g values, gJ, for the free
trivalent rare earth ions.

As shown in Figure 2, the calculated susceptibility is in good
agreement with the experimental values for 1-Er, 1-Ho, and 1-
Dy, and Table 1 shows that the values of 2J and Ueff are similar
for these compounds. Since 2J represents the energy gap
between the two lowest-lying spin states, this result suggests
that the magnetic relaxation pathway in these complexes may
be due to loss of the exchange interaction. Hence, the strength
of the coupling between the Ln and the bridging N2

3− may
determine the magnetic relaxation rate, which ultimately
determines the blocking temperature in these complexes. On
the other hand, we were unable to obtain a satisfactory fit for 1
with M = Tb (1-Tb) with our HDVV calculations, and the
susceptibility curves for 2-Tb show a significant influence from
the ligand-field potential, which is not particularly surprising
since Tb complexes often display large energy gaps between
states (e.g., first excited state of [Pc2Tb]

− is roughly 400 cm−1

above the ground state).7 For this reason, the value of 2J for 1-
Tb is not reliable and cannot be directly compared to Ueff. It is
also possible that the high barrier in 1-Tb (227 cm−1) is due at
least in part to other mechanisms not considered in the present
study, such as Orbach transitions to higher-lying ligand-field
states.18,31

These results suggest that the Ueff in 1 may be due to
exchange coupling between the lanthanide ions and the
bridging N2

3− radical, but these results do not explain why
other relaxation pathways in 1 appear to be suppressed.
Previous investigations have observed that exchange coupling
can enhance SMM behavior in Ln complexes.12,32−36

Exchange Coupling in Cp*2Yb(bipy) (3). Since exchange
coupling in 1 is intimately related to its SMM behavior,
understanding why exchange coupling in 1 is so much stronger
than typically encountered in lanthanide systems would be
useful. However, the SMM behavior of 1 complicates this
investigation; therefore, the origin of very strong exchange
coupling between a Ln ion and an organic radical was studied in
a different system, 3, with the goal of applying the information
gained about 3 to explain the strong exchange coupling in 1. As
noted in the Introduction, 3 has been extensively studied and
shown to have a singlet ground state with a large energy gap to
the excited triplet state.15 At low temperatures, 3 is best
described as a temperature-independent paramagnet with χTIP =
0.0016(2) emu where the error given in parentheses reflects the
difficulty in determining the value of χTIP in the presence of the
“Curie tail” (paramagnetic contribution due to the presence of
impurities). The temperature-independent magnetism (TIP) of
3 results from the unquenched orbital angular momentum of
the electron on the Yb(III) center. Consequently, 3 is quite
paramagnetic: its TIP is approximately 2 Bohr magneton at
room temperature.
If spin−orbit coupling was insignificant in 3, 2J could be

determined from χTIP using eq 1,20 where c1 is the coefficient
for the |f13,bipy•−⟩ configuration that gives rise to the TIP, N is
Avogadro’s number, β is the Bohr magneton, gi are the g values
for Yb3+ in 3, and gbipy•− is the g value of bipy•−.

∑χ β≅ −
=

•−
N

J
g gc

12
( )

i x y z
iTIP 1

2
2

, ,
bipy

2

(1)

Equation 1 is appropriate for the spin-only Heisenberg, Dirac,
van Vleck (HDVV) spin Hamiltonian, = − · •−+JS S2 Yb bipy3 .
Since 3 possesses unquenched orbital angular momentum, eq 1
is not directly applicable but can be used once the presence of
unquenched orbital angular momentum is taken into account.
To accomplish this, the spin of Yb3+ is first projected onto its
total angular momentum, JYb3+, as was done for 1, using SYb3+ =
(gJ − 1)JYb3+, which gives = ‐ − ·+ •−g J J S( 1)2J Yb3 bipy .29,30

Due to the unquenched orbital angular momentum of 3, the
coupling between JYb3+ and Sbipy•− is highly anisotropic. For the
ground Kramer’s doublet of Yb3+ in 3, gJJYb3+ = gYb3+·S̃Yb3+,
where gYb3+ and S̃Yb3+ are the g tensor and effective spin for the
ground Kramer’s doublet, respectively, and the Hamiltonian is
as = ‐ − · ̃ ·+ + •−J g g g S S2 [( 1)/ ]( )J J Yb3 Yb3 bipy .30 In this way,

the anisotropy in the exchange may be expressed in terms of
measurable quantities, the EPR g values of the ground
Kramers’s doublet of the Yb3+ fragment. The corresponding
relationship between χTIP and J is given by eq 2.

∑χ β≅
−

−=

•−

c
N

J

g g g

g g12

( )

(1 )i x y z

J i

i J
TIP 1

2
2

, ,

bipy
2

(2)

Although the g values for Yb3+ spins in 3 cannot be readily
determined, those of the closely related complex [Cp*2Yb-
(bipy)]+I− (3+I−) are 7.050, 1.731, and 1.165.19 Since the
structures of 3+I− and 3 are almost identical, the complexes

Figure 2. Experimental (dots) and calculated (lines) magnetic
susceptibility for 1. All experimental data were taken from refs 8 and 9.

Table 1. Values of geff and 2J Obtained from the Fits
Presented in Figure 2a

Ln geff −2J (cm−1) gJ Ueff (cm
−1)

Er 1.18 21 1.20 36
Ho 1.25 83 1.25 73
Dy 1.28 102 1.33 123
Tb 1.45 (108)b 1.50 227
Gd 2.00c 54 2.00c

aThe Lande ́ g values and barrier for magnetic relaxation Ueff from refs
9 and 8 are included for comparison. bModeled susceptibility does not
agree with the data for Tb as discussed in the text. cFixed at g = 2.00.
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must have similar ligand fields and the g values of 3+I− should
be good estimates for those of 3. In this way, the information
about the ligand field and unquenched orbital angular
momentum of 3 needed for eq 2 is obtained from its
diamagnetic substitute, 3+I−.19,37 Using χTIP and the g values of
3+I−, eq 2 yields 2J = −0.11(2) eV or −920(180) cm−1. This
surprisingly large value is consistent with the large value
predicted computationally.15

Hubbard Molecule Model. The exchange coupling in 3 is
approximately 3 orders of magnitude larger than exchange
coupling in typical lanthanide systems as well as an order of
magnitude greater than in 1. The previous computational study
clearly shows that both the strong exchange coupling in 3 and
its multiconfigurational ground state are related to the mixing
of low-lying singlet states into the ground state. The strong
exchange coupling in 3 may be quantitatively explained using a
Hubbard molecule model (HMM).21,22 The HMM includes
two sites, two electrons, and two parameters: t and U. The
transfer integral, t, determines how readily a single electron may
move between the two sites and is the stabilization of the
bonding orbital due to the overlap of the orbitals containing the
unpaired electrons (t is equivalent to −β in the Hückel model
for π electrons).23 Electron repulsion, U, is the energy needed
to pair the electrons on a single site and closely related to
charge transfer within the molecule.
The HMM allows t and U to be determined spectroscopi-

cally, so that the extent of exchange coupling predicted by the
HMM may be compared with that determined from the TIP of
3. In the case of 3, the ligand-field potential isolates a doublet
ground state (S̃Yb3+ = 1/2) for the 4f13 configuration of Yb3+

and the HMM basis set includes the six states shown in Figure
3. Following the recent work on covalency in Cp3Yb,

27 states

Ψ1−Ψ4 describe ionic bonding in which the charges are
localized on Cp*2Yb

+ and bipy•−. State Ψ5 describes covalent
bonding in which an electron on bipy•− has been shared with
Cp*2Yb

+. State Ψ6 describes covalent bonding where an
electron on Cp*2Yb

+ has been shared with the bipy•; however,
Ψ6 is at very high energy because it involves a tetravalent Yb
ion, so Ψ6 will not be used below. Likewise, the Yb

3+ 5d orbitals
are much higher in energy and do not contribute significantly
to the behavior of 1 apart from hybridizing with the 4f orbitals
to improve their overlap with the ligand orbitals (the single,

half-occupied orbital labeled “4f” in Figure 3 is actually a 4f−5d
hybrid orbital). In the absence of any interaction between the
spin on the Yb3+ ion and the bipy•− radical (i.e., when t = 0),
states Ψ1−Ψ4 are degenerate and Ψ5 is greater in energy by U,
the energy needed to pair the electrons on the Yb center. The
Hamiltonian for the system in which the Yb3+ and bipy•− do
not interact, 0, can be written as = ++ •−0 Yb3 bipy ,

where +Yb3 and •−bipy are the Hamiltonians for the
unpaired electrons on the Yb3+ and bipy•− fragments,
respectively.
Allowing the spins on the bipy radical and Yb3+ center to

interact produces the perturbed Hamiltonian = + h1 0 1
where h1 contains the interactions between the Yb3+ and bipy•−

fragments (the Hamiltonian for the HMM is given in the
Supporting Information). These interactions allow the mixing
of Ψ5 into Ψ1−Ψ4, which lifts the degeneracy of states Ψ1−Ψ4
and destabilizes Ψ5 as illustrated in Figure 4. Perturbation

theory allows 2J to be expressed in terms of t and U: 2J = ΔE =
− 2 t 2 /U , w h e r e t = ⟨Ψ Y b 3 + | h 1 |Ψ b i p y • − ⟩ a n d

= ⟨Ψ| |Ψ⟩‐⟨Ψ| |Ψ⟩U 1 0 1 5 0 5 . To first order, the resulting singlet,
ground-state wave function, ΨS, is given in eq 3.

Ψ = Ψ − Ψ + Ψ

= +

⎜ ⎟

⎜ ⎟

⎡
⎣⎢
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠

⎤
⎦⎥

⎛
⎝

⎞
⎠

c
t

U

c
t

U

1
2

( ) 2

1
1 2

S 1 2 5

2

(3)

As in the computational model, the ground state is multi-
configurational and can be described as a largely ionic bond,
where c is the ionic character in the wave function, which also
contains a small amount of covalent character due to Ψ5. In this
case, the exchange coupling, 2J, is also the strength of the
covalent interaction, ΔE. The relationship between the strength
of the exchange coupling and the HMM parameters t and U is
straightforward: increasing t (by increasing the overlap between
the orbitals containing the unpaired electrons, for example) or
decreasing U (by making the radical more strongly reducing,
for example) strengthens the exchange coupling.

Analysis of Exchange Coupling in Cp*2Yb(bipy) Using
the HMM. The HMM decouples the Hamiltonian that gives
rise to the electronic structures of [Cp*2Yb]

+ and bipy•−, 0,
from the perturbation, h1, that contains the interactions
between the spins on the two fragments. This decoupling

Figure 3. Electronic states that form the basis for the Hubbard
molecule model for Cp*2Yb(bipy); 4f orbital corresponds to the single
half-occupied 4f orbital of Yb3+, and the π* is the lowest lying
antibonding orbital of the bipy ligand, which is also half-occupied.

Figure 4. Energy levels in the Hubbard molecule model for
Cp*2Yb(bipy). States on the left have no interaction between the
Yb3+ and bipy•− spins; states on the right result from including that
interaction.
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allows the interaction between the spins on Cp*2Yb
+ and

bipy•− to be evaluated without knowing the details of the
electronic structures of either fragment. In practice, this means
that the interactions between the spins can be evaluated
without knowing the crystal-field parameters for 3, which is
important since its low symmetry makes evaluating the crystal-
field parameters extremely difficult. Using this approach allows t
and U to be determined from previous spectroscopic studies of
3.
As noted in the Introduction, the wave function of 3 may be

written as Ψ = c1|f
13,bipy•−⟩ + c2|f

14,bipy⟩, where c1 and c2 are
coefficients of the two configurations. X-ray absorption near-
edge spectroscopy shows that 3 is multiconfigurational with c1

2

equal to 0.83(3).16 Absorption spectra of 3 and related
complexes have been extensively studied, and a low-lying
transition at 4750(250) cm−1 has been assigned as a ligand-to-
metal charge transfer band (ELMCT).

38 Using these values of c1
2

and ELMCT, t and U are 0.13(1) eV and 0.42(4) eV, respectively,
since c1

2 = c2 in eq 3 and ELMCT = U + 4J = U + 4(t/U)2 (see
Figure 4). The resulting value of 2J is −0.09(1) eV or
−700(90) cm−1, which is in good agreement with the value of
−0.11(2) eV determined from the susceptibility of 3.
The value of t/U determined using perturbation theory is

large, 0.32(1), which calls into question the validity of the
perturbative solution. Therefore, the HMM was also solved
exactly; the ground state, ΨS, is given in eq 4, and ΔE is given
in eq 5.

Ψ = Ψ − Ψ + − + Ψ

= + − +

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥c

U U t
t

c
U U t

t

1
2

( )
8

2 2

1
1

( 8 )
8

S 1 2

2 2

5

2 2 2

2 (4)

Δ = − +
E

U U t8
2

2 2

(5)

The values of t, U, and 2J may be determined numerically to
give t = 0.16(2) eV, U = 0.39(2) eV, and 2J = −0.10(2) eV,
which are similar to the perturbative solution but in better
agreement with the value determined from the TIP of 3. While
the exact solution seems more accurate, the perturbative
solution allows a more intuitive understanding of the
relationship between t and U and 2J.
The value of 2J predicted by the HMM is in good agreement

with that determined experimentally. More importantly, the
HMM underscores the intimate relationship between the
strong exchange coupling and the multiconfigurational behavior
of 3 and is illustrated in a simple manner. In 3, configuration
interaction is strong, due largely to the small value of U. This
interaction results in substantial mixing of covalent Ψ5 into the
otherwise ionic bond between [Cp*2Yb]

+ and bipy•−. The
strength of the covalent interaction is 2J.
Implication of the HMM for Exchange Coupling in

Lanthanide Single-Molecule Magnets. The HMM can also
be used to understand the strong exchange coupling between
the dinitrogen radical, N2

3−, and each Ln center in 1. The
primary reason that exchange coupling in 1 is so much larger
than in 2 is that coupling between N2

3− radical and the Ln
centers in 1 is due to direct overlap of the orbitals containing
the unpaired electrons, while coupling between the two Ln
centers bridged by closed-shell N2

2− in 2 is due to

superexchange (i.e., there is no direct overlap of the orbitals
containing unpaired spins). This difference is best illustrated by
noting that exchange coupling in 1-Gd is approximately 50
times stronger than in 2-Gd. This effect has been observed
previously for transition metal ions bridged by chloranilate
dianion (CA2−) and CA•3−, where the interaction with the
bridging radical ligand was much stronger than superexchange
via the closed-shell CA2− ligand.39,40 A recent DFT study of 1-
Gd reaches similar conclusions about the role of the bridging
radical in this complex.41

While direct overlap between the Ln orbitals and the orbitals
containing the unpaired electron is important, it is not sufficient
to explain the strong exchange coupling in 1. Direct overlap is
also possible in Ln complexes containing stable radicals such as
nitroxyl, yet these complexes display much weaker exchange
coupling.42−47 The HMM clearly explains why exchange
coupling in 1 and 3 is strong while exchange coupling between
Ln centers and ligands containing stable radicals such nitroxyl
radicals is much weaker.42−47 Trivalent lanthanide ions have
large, negative reduction potentials, so strongly reducing ligands
with similarly large, negative reductions potentials are needed
to minimize U. Both N2

3 and bipy•− are strongly reducing, so U
should be relatively small in 1 and 3. In complexes with stable
radical ligands, U will be much larger because these radicals are
not strongly reducing.
The HMM not only explains the strong exchange coupling in

1 but also illustrates a subtler but equally interesting effect. As
shown in Table 1, the exchange coupling of 1-Dy is roughly
twice that of 1-Gd. While this may seem counterintuitive (Gd
has a larger pure-spin moment than Dy, and the 4f electrons
have a larger radial extent in 1-Gd relative to 1-Dy due of the
Ln contraction), an obvious explanation can be found within
the HMM: Dy2+ is more stable than Gd2+, so U must be smaller
in 1-Dy than in 1-Gd, and N2

3− is more effective in creating
exchange pathways in Dy than in Gd complexes.

■ CONCLUSION
The strong exchange coupling observed between lanthanides
and strongly reducing radical ligands in 1 and 3 has been
quantified. The similarity of the values of 2J for 1-Dy, 1-Ho,
and 1-Er to their thermal relaxation barriers, Ueff, suggests that
the exchange coupling in 1 is an important factor in
determining the behavior of these complexes, including the
blocking temperature. The exchange coupling in both 1 and 3 is
very large and can be explained using a HMM. For 3, the good
correspondence between the level scheme derived from
spectroscopic data and that determined using magnetic
susceptibility shows that this model can accurately describe
the singlet−triplet gap in lanthanide complexes displaying
strong exchange coupling. The HMM illustrates in a simple
manner how configuration interaction introduces covalency
into an otherwise ionic bond through strong electron
correlation. The HMM expresses the strength of this covalent
interaction, 2J, in terms of t and U, which can be readily
determined spectroscopically.
The HMM suggests two approaches to maximize exchange

coupling in Ln systems. Matching the redox properties of the
radical and the Ln can minimize U. Due to the large, negative
reduction potentials of the Ln3+ ions, strongly reducing radical
ligands should lower the value of U, especially when coupled to
lanthanides that have accessible divalent states (Nd, Eu, Sm,
Dy, Tm, and Yb). Likewise, strongly oxidizing ligands may
lower the value of U for lanthanides that have accessible
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tetravalent states (Ce, Pr, and Tb). In addition, increasing the
overlap between the radical ligand and the metal ion can
increase t, which might be accomplished through the use of
actinide ions, where the radial extent of the 5f orbitals is greater
than the radial extent of the Ln 4f orbitals. In any case, the
exchange coupling found in 3, 920 cm−1, shows that strong
magnetic exchange is possible for Ln ions and that the coupled
state may persist to relatively high temperatures. In comparison,
the coupling in 1-Dy is approximately an order of magnitude
weaker than in 3, which suggests that the exchange coupling in
Ln-cluster SMMs can be increased substantially.
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